Quantum Liquids:

This class covers basics of Fermi Liquid theory, charged electron liquid in metals, superfluidity in He-4, two-fluid theory, BCS theory of superconductivity, Ginzburg-Landau phenomenological approach to superconductivity and other second-order phase transitions. The particular attention will be given to concepts of low-energy quasiparticles and effective models, and spontaneous symmetry breaking.


  1. Theory of (neutral) Fermi liquid
    1. Quasiparticles
    2. Thermodynamic/Static properties
    3. Hydrodynamic description
    4. Oscillations of the liquid: sound modes
    5. *1D Luttinger liquid
  2. Charged Quantum Liquids
    1. Screening
    2. Plasma Oscillations
    3. Linear Response Formulation
  3. Non-ideal Bose Gas
    1. Bogoliubov excitations and rotons
  4. Superfluidity (He-4)
    1. Condensate, broken symmetry and long-range order
    2. Vortices
    3. Two-fluid hydrodynamics
  5. Superconductivity
    1. Cooper pairing
    2. BCS Theory
    3. Ginzburg-Landau (GL) Approach
    4. Abrikosov Vortices
  6. Superfluid He-3
    1. Order Parameter and Phase Diagram
    2. GL Theory
    3. NMR

Homework and Exams:

Assignment Due Solutions
 HW1 (free fermions) Tue Jan 27 hw1
 HW2 (math) Tue Feb 3 hw2
 HW3 (currents) Tue Feb 10 hw3
 HW4 (impurity scattering) Tue Feb 17 hw4
 HW5 (sound waves) Thur Feb 26 hw5
 HW6 (Luttinger liquid) Tue Mar 17 hw6
 HW7 (Charged liquid) Tue Mar 24 hw7
 HW8 (Plasmons) Tue Mar 31 hw8
 HW9 (BEC) Tue Apr 7 hw9
 HW10 (Superfluidity) Tue Apr 14 hw10
 HW11 (BCS theory) Tue Apr 21 hw11
 HW12 (GL approach) Thu Apr 30 hw12
 FINAL EXAM noon, Mon May 4 solutions

The Final is Graded, and is in your mailboxes. (05/05/2015)
Red letter is the grade for the Class.

Some Lecture Notes:

Boltzmann equation - transport/local equilibrium