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The Boltzmann equation for the quasiparticles is (neglecting spin)

∂

∂t
np(r, t) + ∇pεp(r) ∇rnp(r)−∇r [εp(r) + U(r, t)] ∇pnp(r) =

(
∂n

∂t

)
collis

(1)

where I explicitly separated potential/external energy U(r) from energy of quasiparticles.
The quasiparticle-quasiparticle collision integral vanishes if we use distribution function

n0p(εp(r), r) =
1

e(εp(r)−µ(r))/T (r) + 1

that has Fermi-Dirac form with some (local) chemical potential µ(r) and temperature T (r). The second r in n0p is
referred to µ(r) and T (r). The spatial (and temporal) dependence also comes into this expression through the complete
energy εp(r) of quasiparticles. The complete energy is important because it is this quantity that is conserved in each
collision, and not some ‘local equilibrium’ energy. The complete quasiparticle energy is calculated using complete
distribution function that has both ‘local’ part and the deviation from it:

np(εp(r), r) =
1

e(εp(r)−µ(r))/T (r) + 1
+ δn̄p(r)

This can be used as definition of δn̄p(r). With this definition of distribution function one can linearize the collision
integral in “relaxation time approximation” (

∂n

∂t

)
collis

= − 1

τp
δn̄p(r)

To linearize the left-hand side of transport equation we use the following. We can define deviation of the complete
quasiparticle energy εp(r) from some ‘local equilibrium’ value ε0p (which is a function of r too, but it turns out this

dependence drops out of the final equation as can be easily checked by using ε0p(r) in all expressions, and so we drop

the (r) in ε0p, but will write the ∇rε
0
p in the final equation explicitly):

εp(r) = ε0p + δεp(r)

where quasiparticle energy change is due to deviation of the quasiparticle distribution funtion from local equilibrium
value:

δεp(r) =
∑
p′

f(p,p′)δnp′(r) with definition δnp(r) = np(εp(r), r)− n0p(ε0, r) (2)

In the last expression we use local temperature and chemical potential in all distribution functions. Then we get the
usual connection between the two deviations of the distribution functions is

δn̄p(r) = np(εp(r), r)− 1

e(εp(r)−µ(r))/T (r) + 1
= δnp(r) + n0p(ε0, r)− 1

e(ε
0
p+δεp(r)−µ(r))/T (r) + 1

= δnp(r)−
∂n0p(ε0, r)

∂ε0p
δεp(r)

but now everything is in terms of local equilibrium picture. Inserting everything into the transport equation:

∂

∂t
[n0p(ε0p, r) + δnp(r)] + ∇p[ε0p + δεp(r)] ∇r[n

0
p(ε0p, r) + δnp(r)]−∇r[ε

0
p + δεp(r)] ∇p[n0p(ε0p, r) + δnp(r)]

−∇rU(r, t) ∇pnp(r) = − 1

τp
δn̄p(r) (3)
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Using the fact that the group velocity of quasiparticles do not change much if we shift energy slightly vp = ∇pε
0
p ≈

∇p[ε0p + δεp(r)], and neglecting δnp terms when they come together with other small quantities, such as δεp, U , we
have

∂

∂t
δnp(r) + vp ·∇rn

0
p(ε0p, r)−∇rε

0
p∇pn

0
p(ε0p, r) + vp ·∇r

(
δnp(r)−

∂n0p(ε0, r)

∂ε0p
δεp(r)

)

=
∂n0p(ε0, r)

∂ε0p
vp ·∇rU(r, t)− 1

τp
δn̄p(r) (4)

and so if we are interested in corrections to local equilibrium in static case, δn̄p, there is no explicit dependence on
δε ∝ f(p,p′), i.e. no quasiparticle interactions to first order in τ .

Instead of writing U(r) term explicitly, we can absorb it into chemical potential µ(r) = µ0−U(r). Then the driving
term will appear due to second term on the left.

Question: what happens if we keep the µ0 uniform, and absorb U into εp(r)?


