
Condensed Matter - HW 6 :: Luttinger Liquid

PHSX 545

Problem 1

Compressibility of matter can be described as a response to a scalar potential: by applying pressure at one point
(changing chemical potential, or particle density at that point) we should be able to tell how this change affect particle
density at some other point. This response is described by the density-density correlation function χ(r = r1 − r2) =
〈δn̂(r1)δn̂(r2)〉. In Fourier space this function is (we will derive it in a few weeks)

χ(q) = − 1
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+∞
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where np is the occupation number of state with momentum p and energy εp.
(a) Show that compressibility, as we defined it earlier, can be directly obtained from density-density correlations

κT =
1
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∂n

∂P
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∂n
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n2
χ(q → 0) ,

irrespective of the distribution function np(εp) (Fermi, Dirac, Boltzmann).
(b) Consider one-dimensional free fermionic gas with εp = p2/2m. At T = 0 directly compute the response function

χ(q) and show that it diverges at some wavevector q∗. Find q∗ in terms of Fermi momentum pf and plot χ(q).

Problem 2

Using the effective Hamiltonian of the charge-spin separated Luttinger model

H =
∑

q>0

[vcq â†c,qâc,q + vfq â†s,qâs,q]

find the heat capacity of 1D liquid. Hint: think about what values can particle number operators n̂c,s take, and follow
the standard route to compute CV at low temperature.
If one applies Fermi liquid theory to 1D case, what temperature dependence of CV is expected - is it the same or

different?
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Answer of exercise 1

(a) The distribution function depends on momenta through the energy, which is measured relative the chemical
potential

np = n(εp − µ)

Then we can write in small-q limit

np+q/2 − np−q/2 ≈ ∂np

∂εp
(εp+q/2 − εp−q/2) = −∂np

∂µ
(εp+q/2 − εp−q/2)

and we can relate the susceptibility to derivative of density n = (1/V )
∑

p np with respect to the chemical potential

χ(q → 0) = − 1
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χ(q → 0) .

(b) At T = 0 the distribution function is either 0 or 1 depending on the value of the momentum:

np =

{

1 , −pf < p < pf
0 , |p| > pf

and

np+q/2 = 1 if − pf − q

2
< p < pf − q

2
np−q/2 = 1 if − pf +

q

2
< p < pf +

q

2

Then the difference of distribution functions in the numerator is non-zero when

np+q/2 − np−q/2 =

{

−1 , pf − q
2 < p < pf + q

2
+1 , −pf − q

2 < p < −pf + q
2

if q < 2pf

and

np+q/2 − np−q/2 =

{

−1 , −pf + q
2 < p < pf + q

2
+1 , −pf − q

2 < p < pf − q
2

if q > 2pf

The integral in the density-density correlation function is over a symmetric integrand so we can integrate only over
the positive p with the integration limits from the above:
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So the susceptibility is
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∣
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∣

∣

∣

∣

with logarithmic infinity at q∗ = 2pf . When the external perturbation tries to modulate the density with 2pf
wavelength, the response in density is divergent. This is the nature of one-dimensional chain of particles that can be
interpreted as particles not passing through each other.
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Answer of exercise 2

In the Luttinger effective hamiltonian

H =
∑

q>0

[vcq â†c,qâc,q + vfq â†s,qâs,q]

the operators â are bosonic, and thus the occupation numbers can be any integer n̂ = 0, 1, 2, 3 . . . . For the energy we
have the ensemble averge with the Bose distribution functions:

E = 〈H〉 =
∑

q>0

[vcq 〈n̂c(q)〉+ vfq 〈n̂c(q)〉] =
∫ ∞

0

dq

2π~

[

vcq

eβvcq − 1
+

vfq

eβvfq − 1

]

Performing dimensionalization of the integrals we write

E = T 2 1

2π~

[

1

vc
+

1

vf

]
∫ ∞

0

xdx

ex − 1
E = T 2 1

2π~

[

1

vc
+

1

vf

]

ζ(2)

where we used some integrals from Bose part of statistical mechanics, and ζ(2) = π2/6 is Riemann zeta-function. The
answer for specific heat is

C =
dE

dT
= T

π

6~

[

1

vc
+

1

vf

]

- linear in temperature.
The Fermi liquid theory approach gives the result for heat capacity using Sommerfeld expansion with density of

states for 1D case N(ε) = 2 1
2π~

dp

dε
=
√

2m/h2ε The temperature corrections to the chemical potential and energy are

T 2 and it results in linear-T dependence of specific heat.
The detailed calculation is as follows: the chemical potential follows from

∫ εf

0

dεN(ε) =
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π2

6
T 2N ′(εf ) ⇒ µ = εf − π2

6
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π2T 2

12εf

The energy is

E =

∫ ∞

0

dεN(ε)εn(ε) = Nf
√
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∫ ∞

0

dε
√
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√
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√
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π2T 2

6

1

2
√
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and the specific heat

C =
dE

dT
= Nf

√
εf

(

∂µ

∂T

√
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π2T

6

1
√
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=
π2

3
NfT =

π

3~vf
T

- same answer as with Bose treatment, if we take the non-interacting Luttinger-gas where charge and spin excitations
propagate with same speed vc = vf .


