Condensed Matter - HW 5 :: Zero Sound Attenuation

PHSX 545

Problem 1

Write the transport equation with collision term in 7 approximation:
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where we subtracted £ = 0 and ¢ = 1 terms in collision integral to satisfy the particle and momentum conservation
laws.

(a) By projecting out different P;(p - q) harmonics derive general equation for v, amplitudes directly from this
equation, without dividing by (w — qvy) throughout (the latter we did in class, which resulted in € (s) functions).
Hint: use the product property and one of the recursion relations (zP,(x) = ...) of Legendre polynomials.

(b) Assume F*(p - p’) has non-zero F_, , , terms only, and drop all others, F’_, = 0. Write down equations for
¢ =0,1,2,3 explicitly. Show that the ¢ = 0 equation corresponds to particle number conservation, and try to show
that ¢ = 1 equation is momentum conservation (you might want to recall assignment two weeks ago).

(c) In the large s = w/qv; limit show that you can terminate the vy series at £ = 2. Set components £ > 2 to zero
and use equations for first three components (1y=¢,1,2) to find dispersion relation for sound wave s.

(d) Investigate the transition from first (wr < 1, expansion in w7) to zero (wr > 1, expansion in 1/w7) sound, and
explicitly determine temperature dependence of attenuation (¢ = ¢’ +i¢’’) in the two limits.



Answer of exercise 1
(a) Starting from
deA,
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we expand in Legendre polynomials the distribution function and the interaction parameters
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and use the product property of the Legendre polynomials
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to write the second term as a sum:
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Then use the recursion relation to express product (p - q)FPy(p - q) as a sum of Legendre polynomilas of ¢ 4 1 order:
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For example, several first recursion relations for the polynomials are:
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We use to write the /-sums as
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Since different harmonics are orthogonal we can read off the equations for various £’s:
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(b) which for £ =0,1,2,3 give

1 Fy 1 Fy
(=0 wl/o—qvfgul—qvfg—;l/l:wl/o—qvfg (1+31> v =0 (2)
s 2 3
(=1 wylfqvf(lJrFo)uo—qvfg 1+? vo = qusU (3)
2 F} 3 F;=0 i
wrs qvf3< —|—3)1/1 qvf7< + - )1/3 V2 (4)
3 F3 4 F;=0 i
(=3 W = quf <1—|—32>1/2—qvf9 <1+ 49 )1/4:—72_y3 (5)
To see that the first two equations correspond to the conservation laws we recall definitions of the particle density,
0
n
current, and momentum tensor, and use dnp = —a—puﬁ, to obtain results familiar from one of the previous homework
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assignments:
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The conservation of particle number gives the £ = 0 equation:
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which after cancellation of common prefactor (ji%Nop ¢ does give £ =1 equation.



(¢) We introduce variable

If we divide equation (5) by w we see that the v3 amplitude is ~ v5/s - small in s > 1 limit, and all consequitive
amplitudes small too. We neglect them. We can say the same about v5/v; ~ 1/s, but v equation is the first one

that contains the scattering time, so we want to keep it.
Keeping only vg1,2 amplitudes we re-write £ = 0,1, 2 equations as
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The sound dispersion equation is given by the condition of zero determinant:

i\ 1 Py i 4 Py Fs
2 D) s (e aeEy (1 L) - S (1) (122 =
S<+w7 s\t )0+ (2 )~ 3 T ) =0



(d) The first sound exists in the limit wr < 1 and we can write its dispersion as
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where we kept only first order w7 term. From this relation the speed of first sound is
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and we can write the wave vector at a given frequency from relation:
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and the attenuation of the first sound is proportional to the scattering time 7 oc 1/7T:
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The zero sound is in the limit w7 > 1 and keeping only first-order terms in 1/wr we have
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(w>2 R SR V0 (R 2 V) ) <1 IR CTOCE S V0) )”2
coq wr (1+ Fg) + (4/5)(1 + F5 /5) T wr (14 F5) + (4/5)(1 + F3/5)
with attenuation proportional to inverse scattering time and frequency independent!
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The general expression for sound mode that span both limits is
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and the wave vector is
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with the attenuation being the imaginary part of this square root.



