Condensed Matter - HW 12 :: Ginzburg-Landau theory

PHSX 545

Problem 1 Superconductor in magnetic field

Starting from the Ginzburg-Landau functional
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(a) Find the condensation energy AF(T) of uniform state in zero field, and determine the thermodynamic critical
field defined by AF(T) = —V H? /8.

(b) Define the coherence length £(7T") and penetration length A(T'), in terms of parameters K, a, 5 and fundamental
constants.

(c) Derive the linearized equation for ¢ in magnetic field, and determine H.5(T) by solving the eigenvalue problem,
i.e. find maximum field where first non-zero solution for ¢ is possible. (Take vector potential in the form A = (0, Hz,0)
and recall solution of Schrodinger equation in uniform magnetic field.)

(d) From the above determine the critical value of parameter sz = \/¢ when H.o(T) exceeds H.(T).
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Problem 2 O, magnet

For a ferromagnet with cubic symmetry one can write GL theory with magnetization vector M = (M, M,,, M)
treated as multi-component order parameter:
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F[My, My, M| = a(T — T.) (M2 + M} + M2) + 5ﬁl(Mg + M+ M2)* + ST =T ) (M + M, + M)

In this functional terms up to fourth power in M, consistent with the cubic symmetry, are kept. Take coeflicients
a,b,8 >0 and T* < T,. This functional supports two solutions, one with M «< 1,0,0 > (magnetization along one
of the main cubic axes), and another with M < 1,1,1 > (magnetization along cube’s diagonal).

Determine the magnetization direction below T, and below T*. Find the jump in specific heat at T, (second order
transition) and jump in entropy and latent heat at T* (first order transition).



Answer of exercise 1
(a) For the uniform state without field the free energy functional is

Flol = {a(r - ool + 1ot}

and its minimization gives
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and the thermodinamic critical field is
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(b) Minimization of the free energy
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in general case with respect to ¥* and A produce two equations:
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from the first equation we define coherence length, or healing length for :
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and from the second equation we have the penetration length of magnetic field into superconductor:
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(¢) The linearized equation for the order parameter is
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which we can write as an eigenvalue problem. With the gauge A = (0, Hz,0) it takes form:
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Since there is no explicit y-dependence one can choose wave function in the form
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This is equation of a harmonic oscillator shifted by zy. The eigenvalues for “energy” a(T. —T)/K are independent of

k, and given by (integer n =0,1,2...):
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We are interested in the highest critical field (n = 0)
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(d) The ratio of penetration and coherence lengths in a uniform superconductor with |¢*> = a(T. — T)/B is

temperature independent:

, A2 R

= £ 7 32nK2e2

The H.; field exceeds thermodynamic critical field when
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Answer of exercise 2

For two different magnetization directions one can write the GL functional as two functionals that depend on the
magnitude M only. Minimize each with respect to M and find the energy of each configuration. The lowest energy
determines the direction of magnetization in the ordered phase.

For < 1,0,0 > phase we write
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M = M(1,0,0)  Fipo[M] = a(T — T.)M? + 5ﬁlM‘* + 5b(T = T*)M*

For < 1,1,1 > phase:
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M=M(1,1,1)/vV3  Fin[M]=a(T -T,)M?*+ §ﬂ1M4 + 5b(T - T*)§M4
For convenience we denote B2 = b(T — T™*) - an interaction coefficient that is positive above T*, and negative below
it.
Minimization gives:
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From this we conclude that if
B2 >0 (T"<T<T) = Fi11(T) < Fioo(T)
and if
P2 <0 (T<T") = Fioo(T) < F111(T)

This means that at T, ordered state appears with magnetization along the cube’s diagonal. At T™ an orientational
transition occurs, and magnetization rotates to point along cube’s side.
At second order transition T, specific heat experiences jump.
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At the orientation transition T™ the entropy experiences jump:

T~ 0

ASTM) =8| =5

Fioo(T) — F11:(T))

Since at T™ the difference between two free energies is coming from the denominator we differentiate denominator
only:
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To go into the lower temperature phase from above we must reduce the entropy content, and remove some heat from
the system L = T*|AS]| - latent heat.
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