
Condensed Matter - HW 11 :: BCS theory

PHSX 545

Problem 1

The Cooper pair wave function for a triplet state is given by rank-2 spinor

ψ(k) = ∆(k) · [iσσy] ,

where ∆(k) is the vector gap function in momentum space, and σx,y,z are Pauli matrices. Show that the expectation
value for the spin of the pair is:

S = 〈Ŝ1 + Ŝ2〉 = i~
∫

d3k

(2π)3
· · · ×∆(k)

and determine the missing piece to go in place of the . . . .

Problem 2

The mean-field Hamiltonian in the BCS theory can be written as:

H = Emf0 +
∑
k

hk hk = ξk(a†k↑ak↑ + a†−k↓a−k↓)− (∆ka
†
k↑a
†
−k↓ + ∆∗ka−k↓ak↑)

with Emf0 =
∑

k ∆∗k〈a−k↓ak↑〉.
For each pair (k ↑, −k ↓) consider a basis in Fock space made up of 4 states: |nk↑, n−k↓ 〉 =

(| 0, 0 〉, | 1, 0 〉, | 0, 1 〉, | 1, 1 〉).
(a) By acting with hk on |nk↑, n−k↓ 〉 show that this is a complete set of states (no new states appear). Find the

eigenstates of hk in terms of |nk↑, n−k↓ 〉 and their energies. Properly normalize them.
(b) Write the state with the lowest energy in the form |BCS 〉 = uk| 0, 0 〉+ vk| 1, 1 〉. Determine uk, vk. Show that

operator bk↑ = ukak↑ − vka†−k↓ annihilates this state. Construct bk↓ in a similar fashion.

(c) Express the other 3 eigenstates of hk in terms of b†-operators acting on |BCS 〉 ground state. Find the excitation
energies of these states compared to the BCS ground state.
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Answer of exercise 1

According to the usual rules of finding an expectation value of an operator, for a single spin in a state α described
by spinor (‘spin wave function’) χα(s) we have

〈Ŝ〉 =
∑
s,s′

χ∗α(s)
~
2
σss′ χα(s′)

with summation over coordinate values for the spin s = 1, 2 (or s = −1,+1). If we have a two-particle state χαβ(s1, s2)
we need to sum over spin coordinates of both particles. To find the expectation value of say spin 1, we write:

〈Ŝ1〉 =
∑
s2,s′2

∑
s1,s′1

χ∗αβ(s1, s2) δs2s′2
~
2
σs1s′1 χαβ(s′1, s

′
2)

and bring it to a more compact form, that will allow us to use the trace and multiplication properties of the Pauli
matrices:

〈Ŝ1〉 =
∑
s2

∑
s1,s′1

χ∗αβ(s1, s2)
~
2
σs1s′1 χαβ(s′1, s2) =

∑
s2

∑
s1,s′1

χ†αβ(s2, s1)
~
2
σs1s′1 χαβ(s′1, s2) =

~
2

Tr
{
χ†αβ σ χαβ

}
where the † operation means taking complex conjugate and exchange of coordinates s1 ↔ s2. Similarly, for spin 2
one can show:

〈Ŝ2〉 =
~
2

Tr
{
χαβ σ∗ χ†αβ

}∗
=

~
2

Tr
{
χ†Tαβ σ χTαβ

}
=

~
2

Tr
{
χ†αβ σ χαβ

}
where T is the tranpose operation. Triplet states are symmetric in spin coordinates and the transposition leaves the
state the same.

The given two-particle wave function is written using Pauli matrices, with the rows and columns being the coordi-
nates of spin 1 and spin 2 respectively:

ψ(k; s1, s2) = ∆(k) · [iσσy]s1s2 ,

and we write for the spin expectation value,

S = 〈Ŝ1 + Ŝ2〉 =
∑
s1,s′1

∑
s2,s′2

∫
d3k

(2π)3
ψ∗(k; s1, s2)

(
~
2
σs1s′1 δs2s′2 + δs1s′1

~
2
σs2s′2

)
ψ(k; s′1, s

′
2)

= ~
∫

d3k

(2π)3
Tr
{
ψ†(k)σ ψ(k)

}
where in the last step we used the symmetric property of the triplet states. Calculation of the spin trace is done using
the properties of the Pauli matrices:

Tr
{
ψ†(k)σ ψ(k)

}
= Tr {[−iσyσ ·∆∗(k)]σ[iσ ·∆(k)σy]} = Tr {[σ ·∆∗(k)]σ[σ ·∆(k)]}

= Tr {σ[σ ·∆(k)][σ ·∆∗(k)]} = Tr {σ[∆(k) ·∆∗(k) + iσ · (∆(k)×∆∗(k))]}

= 2i∆(k)×∆∗(k)

The factor 2 in front is from unnormalized way of writing the spin wave function. We omit it in the final answer. The
expectation value for the spin of the pair is then:

S = 〈Ŝ1 + Ŝ2〉 = i~
∫

d3k

(2π)3
∆(k)×∆∗(k)
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Answer of exercise 2

The mean-field BCS Hamiltonian is

H = Emf0 +
∑
k

hk hk = ξk(a†k↑ak↑ + a†−k↓a−k↓)− (∆ka
†
k↑a
†
−k↓ + ∆∗ka−k↓ak↑)

For each pair (k ↑, −k ↓) consider a basis in Fock space made up of 4 states: |nk↑, n−k↓ 〉 =
(| 0, 0 〉, | 1, 0 〉, | 0, 1 〉, | 1, 1 〉) that we will label (in this order) as | i = 1, 2, 3, 4 〉.

(a) We can create a table of action:

hk| 0, 0 〉 = −∆k| 1, 1 〉
hk| 1, 0 〉 = ξk| 1, 0 〉
hk| 0, 1 〉 = ξk| 0, 1 〉
hk| 1, 1 〉 = 2ξk| 1, 1 〉 −∆∗k| 0, 0 〉

that one can cast into matrix form, hij = 〈 i |hk| j 〉, and use it to find its eigenvalues and eigenvectors in this basis:

ψn=1,2,3,4 =
∑4
i=1 ci| i 〉

hij =

 0 0 0 −∆∗k
0 ξk 0 0
0 0 ξk 0
−∆k 0 0 2ξk

 ⇒ ĥψn = Enψn ⇔

 0 0 0 −∆∗k
0 ξk 0 0
0 0 ξk 0
−∆k 0 0 2ξk


 c1
c2
c3
c4

 = E

 c1
c2
c3
c4


It is easy to find the 4 eigenstates:

ψ1 =

 uk
0
0
vk

 = uk| 0, 0 〉+ vk| 1, 1 〉 E1 = ξk −
√
ξ2k + |∆k|2

ψ2 =

 0
1
0
0

 = | 1, 0 〉 E2 = ξk

ψ3 =

 0
0
1
0

 = | 0, 1 〉 E3 = ξk

ψ4 =

 −v
∗
k

0
0
u∗k

 = −v∗k| 0, 0 〉+ u∗k| 1, 1 〉 E1 = ξk +
√
ξ2k + |∆k|2

with

uk =
Ek + ξk√

(Ek + ξk)2 + |∆k|2
vk =

∆k√
(Ek + ξk)2 + |∆k|2

|uk|2 + |vk|2 = 1 Ek =
√
ξ2k + |∆k|2

With these definitions all the states are properly normalized and orthogonal.
(b) We write the lowest energy state

|BCS 〉 = uk| 0, 0 〉+ vka
†
k↑a
†
−k↓| 0, 0 〉

with the same coefficients as defined above. Acting with bk↑ = ukak↑ − vka
†
−k↓ on this gives (omitting obvious

vanishing terms):

bk↑|BCS 〉 = (ukak↑ − vka†−k↓)(uk + vka
†
k↑a
†
−k↓)| 0, 0 〉 = ukvk(ak↑a

†
k↑a
†
−k↓ − a

†
−k↓)| 0, 0 〉
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= ukvk(a†−k↓ − a
†
k↑ak↑a

†
−k↓ − a

†
−k↓)| 0, 0 〉 = 0

where we used anticommutation relations of fermionic operators.
To construct bk↓ we look at another part of BCS state:

|BCS 〉 = u−k| 0, 0 〉+ v−ka
†
−k↑a

†
k↓| 0, 0 〉

and to make sure we have similar cancellation we need to change sign in front of the creation part since additional -1

sign appear due to ak↓a
†
−k↑ = −a†−k↑ak↓:

bk↓ = u−kak↓ + v−ka
†
−k↑ = ukak↓ + vka

†
−k↑

and also

b−k↓ = uka−k↓ + vka
†
k↑ b−k↓|BCS 〉 = 0

(c) To express other states through the |BCS 〉 ground state we act with creation b† operators on it:

ψ2 = b†k↑|BCS 〉 = (u∗ka
†
k↑ − v

∗
ka−k↓)(uk + vka

†
k↑a
†
−k↓)| 0, 0 〉 = (|uk|2a†k↑ − |vk|

2a−k↓a
†
k↑a
†
−k↓)| 0, 0 〉

= (|uk|2 + |vk|2)a†k↑| 0, 0 〉 = | 1, 0 〉 = ψ2 E2 − E1 = ξk − (ξk − Ek) = Ek =
√
ξ2k + |∆k|2

ψ3 = b†−k↓|BCS 〉 = | 0, 1 〉 E3 − E1 = ξk − (ξk − Ek) = Ek =
√
ξ2k + |∆k|2

These are single particle excitations.

ψ4 = b†k↑b
†
−k↓|BCS 〉 = (u∗ka

†
k↑ − v

∗
ka−k↓)a

†
−k↓| 0, 0 〉 = −v∗k| 0, 0 〉+ u∗k| 1, 1 〉

E4 − E1 = (ξk + Ek)− (ξk − Ek) = 2Ek = 2
√
ξ2k + |∆k|2

This is the excited state of the pair, two-particle excitation.


