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Using circularly polarized soft x rays to probe antiferromagnetically
correlated Co /Cu multilayers
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X-ray resonant magnetic scattering was used to study the antiferromagnetic correlation between
weakly coupled Co layers in[@o(6 nm)Cu(6 nm)],, multilayer. Half-order peaks were observed

for standard speculaé—260 scans with the energy of the incident x rays tuned to thelLGo
absorption edge. Three characteristic lengths were extracted from fits to the multicomponent 3/
2-order diffuse spectrum: average correlated domain size, average correlated domain wall thickness,
and average in-plane structural correlation length. 2@4 American Institute of Physics.
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INTRODUCTION cend current-in-plane magnetoresistance with<1 kG.%1°

) __ltis therefore beneficial to understand the physics of weakly
Layered structures that possess giant magnetoresistiv@ypled FM/NM multilayers.

(GMR) properties have potential applications in field sensors ~ The MR is defined by MRf)=[R(P)-R(H)]/R(P),
and other devices that exploit spin-polarized currents. MUC'%vhereR(P) is the resistance measured when the layers are
research has been done on structures composed of alternatifghned parallel to one another. MR} for a strongly AF
ferromagnetic(FM) and nonmagneti¢NM) layers, which  coupled Co/Cu multilayer is largest at zero applied field
exhibit oscillations between FM and antiferromagn€f€)  since alternating FM layers are antialigned and spin-
coupling between neighboring FM layers as a function ofyependent electron scattering is maximized. The MR de-

NM spacer layer thickness:" This oscillation in AF/FM  ¢reases with applied field and is at a minimum when the field
coupling has been successfully described using th‘?eaches the saturation vale.

Ruderman~Kittel-Kasuya~Yosida thedand, equivalently, As the spacer layer thickness is increased and the FM
using a description in which quantum interference effects Ofayers become more weakly coupled, the MR(changes

the electrons in the spacer layer facilitate the osciIIat?ons.Shape so that the maximum MR occurs near the coercive
AF coupling is associated with large GMR effects due ©Ofie|q H_. An intriguing observation is that, for a pristine
spin dependent electron scattering at the interfaces; the resigample that has never been exposed to a magnetic field, the
tance of the layer is maximized in zero applied field wherer () s significantly larger(about doublg than R(H,).°

the neighboring FM layers are antiferromagnetically alignedgnce the multilayer is exposed d., the pristineR(0)

As the applied field is increased to saturation, all of the FM.gnnot be recovered by exposure to a fieldH, or by

layers align with the field and the spin dependent Scatteringclemagnetizatioﬁ‘?'” It is the pristineR(0) that will be the
and thus the resistivity is reducéd signature of the in- focus of the rest of this article.

creasing degree of the AF coupling between multilayers is i \ya5 found that antiferromagnetic correlations between

the tilting, i.e., the reduction of the "squareness” of the hys- 45 mains in adjacent FM layers were responsible for the high
teresis loof. Consequently, the saturation field increases istine R(0). This was accomplished by identifying half-
with mcreaseij degree of AF coupling which can be quantiy, e peaks in neutron scattering experiments, using either
fied as —4J;=HMt;, whereJ; is the AF interlayer ex- 51417682 or polarized®*3neutrons. Half-order peaks re-
change.cou'plmg con'sta:ﬂ,s is the slaturatlr:).ngeldw Isthe  gjjted from an AF superlattice structure with twice the period
mag_ltlhetlzatlon, gndf fl's|;| € sp?cer ayerlt IC nelssa. / of the bilayer. Polarized neutron reflectiviPNR) together

‘ne sat_uratlon leldHs, or_str(_)ng y couple Co Cl_J with scanning electron microscopy with polarization analysis
multilayers is around 10 kG, which is not readily acce55|ble(SEMPA) unequivocally identified the AF correlation in the

|r][ aptpllcatlonﬁhHowee/e;&:|t 1S klrs_(l)wn that_;/r\:eakly coupledth ristine multilayers? The half-order peaks disappeared after
structures, such as Lo/Lu multifayers with Spacers on pplying a magnetic field of magnitude., and were not

order of 6 nm or greater, can exhibit significdatfew per- recovered after field cycling or demagnetization.
In this article we focus on a method that is complemen-

dAuthor to whom correspondence should be addressed; electronic maifary to PNR, SOf't )("r"fly resonan.t mag'netic scattering
sstadler@physics.siu.edu (SXRMS). SXRMS is similar to PNR in that it measures the
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FIG. 1. The SXRMS scattering geometN.is the sample norma§l is an
aperture that defines the incident beam dimensiDris, a slit/detector com-
ponent, andH is the applied magnetic field.

3/2
order

Scattered Intensity (arb. units)

momentum transfer®, and Q,; in our case, we measured
the specular reflectivity as a function of incident angge o ]
6—20 scar) at a resonant energy to obta@y, and, similarly, G L 15 7 =5 s 20
scanned the sample angle while keeping the detector station- Angle o (Degrees)

ary (conventional rOCklr?g scarto obtain the diffuse spec_— FIG. 2. Specular scans before and after the interlayer AF correlation was
trum and therefor®), (Fig. 1). An electromagnet was posi- gestroyed by the first field application.

tioned such that we could apply a field simultaneously in the

plane of the sample and the plane of incidence. SXRMS

data, like PNR data, are sensitive to the size, orientation, aniihe coercive state or by field cycling. It should be noted that

relative interlayer alignment of magnetic domains in buried3/2- and 5/2-order reflections are easily observed, and the 7/2
layers'*®As is the case with PNR data, SXRMS data canorder was barely discernable. The 1/2-order peak was not
yield information regarding chemical as well as magneticeasily identified.

roughness®18 Rocking scans were measured at integer-order, half-
integer-order, and off-ordglbetween 3/2 and second-orgler
EXPERIMENT positions(Fig. 3). The spectra have been symmetrized and

In this study, SXRMS was used to probe AF interlayer.norma.“.zed to the intensity of the incident beam. The relative
. . intensities of the half-order peaks can be used as a measure
correlations between FM layers in a weakly coupled

[Co(6 nm)Cu(6 nm)l,, multilayer. The multilayer was of the relative degree of AF correlation between the Co lay-
sputtered onto aXx 1 tz:?n2 Si subystr;':lte as describgd in detail &> The 3/2-order peak exhibits the most contrast between
eIFfsewher d® The sample was identical to the samples used | r]sl_pectra measured before and after the first field application.
the PNR study of Borcherst al %3 The XRMS data were he “after applied field” spectra in Fig. 2 were measured in

acquired at the MSU-NSLS X-Ray Magnetic Circular Di- remanence, i.e., the sample was still magnetized. Although

chroism and Resonant Scattering Faciitgt beamline U4B this has an affect on the specular intensity, the diffuse scat-

at the National Synchrotron Light Source at Brookhaven Na:[ermg profile of the 3/2 peak could not be recovered in re-

tional Laboratory. The U4B monochromator is of the manence or after field cycling demagnetization.

. ., . . . . A conventional rocking scan spectrum is usually com-
Double Dragon” design, and is capable of producing highly )

. . : . posed of two parts: a sharp specular peak and a broader
circularly polarized(in excess of 90%x rays in an energy

range that spans 20—1350 &\ diffuse background. The rocking scan centered on the 3/2-
The first objective of this experiment was to use SXRMSorder peak before magnetic field application is somewhat

to observe half-order specular reflections in a pristine

[Co(6 nm)Cu(6 nm)],, multilayer. The energy of the inci- Scattering Angle (degrees)

dent light was set to the Cd.; absorption edge H S WSS, FOSIONS . NN . RSB SO OO B
=778.9 eV) and the degree of circular polarization was set 10" 1% Order .
to about 90%. These parameters were set to maximize the 10° 372 Order 7

10' - —— Before Field |
Off Order I

ouer 1 Imy {§ After Field 7
512 Order )e%{ 3

sensitivity of the incident photons to the magnetic state of
the FM Co layers.

RESULTS AND DISCUSSION

Scattered Intensity (offset)

A standardf—-26 scan was carried out before the pristine
sample was subjected to an applied magnetic field. Half-
order peaks were observed and are depicted in Fig. 2. The
integer and half-order reflections are consistent with the
simple Bragg reflection lawm\ =2d sin§, wherem is the
order number) is the wavelength of the incident ligkt5.9 _ _ _

A) andd is the bilayer or AF superlatice period ., 12 andyi, > Foecnd sens cenieres o s b piger, v ot o

2_4 nm, r§5p_eCtive|Y- The half-order peaks disappeared faft%rarity and are in the order indicated by the legend. Arrows point to the
field application H;=400 G) and could not be recovered in diffuse features I-Ill.
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TABLE |. Correlation lengths extracted from fits of the three Gaussiancould be the result of a secorigmalle) average correlated
components of the diffuse part of the 3/2-order rocking scan. domain size distribution in the multilayer. However, this was
Region Aq, (A1) T (A)XRMS Descripion T (A)SEmpa ot directly observed in the SEMPA measurements.

— Finally, the broadest component of this spectregion

! 0.0418 7000 Domain size - 5000-15000 |1 yje|ds the structural correlatiai130 A), which is smaller

Il 0.352 825 Domain wall 2000 .

I 292 130 Grain size 1000 by a factor of 10 than the value observed in the SEMPA
measurements. There are fundamental differences between
the XRMS and SEMPA measurements. First, the incident x
rays in the XRMS measurements were tuned to theLgo
absorption edge, making these measurements specific to Co,
thus we are looking exclusively at the lateral correlation
lengths of the Co layer. Second, in order to access the Co
layer in SEMPA measurements, the overlayers were sput-

(region 1), and (iv) and a broad, low intensity part which tered away with 2 keV Af ions. This additional processing
spans the entire angular rangegion I1l). may have changed the structural roughness of the surface.

In the case of a simple two-component rocking scan, thé\though there is a di;tinct advantage of viewiqg domain
perpendicular and in-plane correlation parameters are prciructures using techniques such as SEMPA, this study ac-

portional to the ratio of specular intensity to diffuse intensity CeNts the advantage of the element-specific and nondestruc-

and the full width at half maximum of the diffuse compo- Ve Probing capability of XRMS.
nent, repectively? In order to extract the in-plane correlation
lengths, we fit the various nonspecular components to ACKNOWLEDGMENTS
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