After being carelessly dropped a hollow, spherical conductor has a shallow dent
which decreases its volume by 1%. By what fraction does the dent change the ca-
pacitance of the sphere? Does the capacitance increase or decrease as a result of the
dent?



Charge ) on the undented sphere would produce a field and potential
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The capacitances is therefore
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where R is the radius of the sphere. The total energy of the electrostatic field is
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The small shallow dent will make only negligible changes to the electric field at
the surface which will continue to be
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The energy in the electrostatic field will increase as the dent-volume, AV > 0, is filled
with this field
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The ratio of egs. (2) to (1) yields
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where V) = 47 R3/3 is the volume of the undented sphere. The differential of eq. (1)
yields
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Substituting (4) into (3) shows that
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So for AY = 0.01V, for the dent, we find the capacitance decreases by 0.33%.



Formal derivation
Consider an approzimately spherical conductor with a surface at
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R is defined by the angular average
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and the conductor approximates a sphere in the sense that 6 < R. An angular
integral of eq. (6) shows that
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Net charge @) resides on the conductor, and there is no charge anywhere else so
the electrostatic potential may be written
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where the sum is over ¢/ > 1 since the monopole (¢ = 0) term, the first in the
expression, is set by the net charge. The conductor is at some potential ®,, meaning

Q ~Q
dreg R 4mey R?

) = O(R+04,0,0) ~ 0(0,0) + > AemY™(0,0) ,  (9)
lm

after dropping terms O(6%/R?), and taking Ay, ~ & (verified below). In order for all
angular variation of the expansion to vanish we require
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from which we can find all values of A,,, ~ 9, justifying our series expansion. Condi-
tion (7) assures there is no monopole term on the right, and the solution is therefore
possible without introducing an ¢ = 0 term into the sum on the left. The monopole
term in eq. (9) thus yields the potential on the conductor
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up to O(62/R?). The capacitance of the conductor is therefore
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To relate the capacitance to volume we compute the integral
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after using eq. (7), and dropping terms O(6%/R?). Introducing that into eq. (12)
yields the explicit version

C = (487 e VP + O(8*/R?) . (13)
A small change to the volume, V = V3 + AV yields a change to the capacitance
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exactly as predicted above. Here a dent correspond to AV < 0 so the capacitance
decreases.



