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1. STRATEGY AND TACTICS FOR NUMERICAL
CONVERGENCE ACCELERATION

Tn order to solve self consistency problems often it is
desirable to spent some memory and time to minimize
the number of iteration steps. If the time to be spent for
analyzing the available information after each iteration
step is still negligible compared to the time one iteration
step itself takes, it makes sense to spent it. An algorithm
widely used in band structure calculations, which is based
on the method of minimizing the mean square deviation,
is appropriate for this. The power of this method lies in
treating large equation systems with very time consum-
ing evaluation of the right hand side.

Consider the n-dimensional fixed point problem
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where the map is from the space X with elements & and
G into the space F of deviation vectors f The fixed
point ploblem is solved if the norm of the n-dimensional
vector f is zero for a given #. Because a norm is always
> 0 per decret, ¥ has to be an absolute minimum for
the norm function (not necessarily unique). The idea is
to find the kernel of the map & — f by local lineariza-
tion. One defines an m — 1-dimensional hyper surface in
F by linear interpolation between the last m vectors fk
Using informations from the last m 1terat10ns one deter-
mines in this hyper surface the vector fmm with smallest
norm. The inverse of the linearized map (which has to be
known of course, this limits our choice of the hyper sur-
face) defines the element ™", which presumably has its
function value close to ™. Because the norm of fmin
is always smaller than all other norms of the remaining
fk, the ™" represents an improvement compared to the
last m points, provided ™™ maps sufficiently close to
fmm. Tt is a matter of educated choice of Zj; to define
the m — 1 dimensional hyper surface in such a way, that
it is as close as possible to the origin. If the guess went
down the hill, it doesn’t matter, because then we just try
another guess knowing already about the d¢saster (and,
of course, avoiding it!). And if at the end of the day we
found ™" &~ 0 nobody is going to ask how often we had
bad luck in the process of finding it. The main idea is
_due to Samuel Beckett:

“Ever try, ever fail, no matter ‘\\

ry agam fall agam fall better
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To begin with something definite, we start with m =1
and increase m with each iteration by 1, saving the infor-
mation of each iteration step. At some point one realizes
that the memory of the computer flows over. Then it
is a good idea not to increase m anymore. SO we only
increase up to a maximal m = Mmae. Once we arrived
at this unpleasant situation (thats the general case), the
method lives and dies with a not too unlucky choice of
Tk.
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Lets assume, we somehow managed to obtain m pairs
(:L"m,fm) where fm f(xm) Then we obtain our new
Z by the condition that at the m — 1- dimensional hyper
surface in F, given by

flal = fu + >_ au(fi = ), (2)
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the norm of the n-dimensional vector f has a local min-
imum:
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This leads to the following hermitian equation system
for g; (where m is fixed and plays only the role of the
iteration index)
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Now we realize that we need the vector ™" which maps
on fm™n = flgr*]. The bad news is, we don’t know it.

The good news is, we can approximize it. We assume
that the m — 1 dimensional hyper surface in X, given by
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maps linearly into the corresponding hyper surface F
This is kind of plausible taking into consideration the
fact, that all m generators a:k of the one hyper surface
map onto the m generators fk of the other hyper surface.
In other words, we assume our map is locally linear. This
assumption becomes gorgeous if we are very close to the
fixed point. We define (remember that Z™" maps only
to the neighborhood of fmm)
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Because no pair without coupling, we define our new pair

(Zrtis fm+1) by coupling back to the old one with a
parameter py,,

xm—}—l — a—jwmm +pmf'min (7)
Frit1 = f(@msa). (8)

Now, after our tactics is clear, we have to find a strat-
egy which tells us which ﬁ are the most relevant ones
for our problem and how strongly do we couple back
(pm). The idea is, that we sort our fi with increas-
ing norm and, because everybody likes throwing away
as much as possible, we throw away the pair with the
largest norm in order to make place for the fresh calcu-
lated (m + 1)th pair (remember that our computer mem-
ory was full). Lets just throw away also some of the pairs



with the larger norms if we did very well one step ago (if
| Frog1] <€ mMing<m| f&l), in order to eliminate these mis-
leading directions. Also if we did very badly one step
ago (|f;n+1| > maxk§m|f;c|) we throw away some of the
bad generators (but we shouldn’t throw away everything
we have because then nothing is left). If the rare case
occurs that the new generator fm+1 degenerates with all
m preceding generators, we don’t give up. We include a
weird (stochastic) step to enforce a new direction.

The guess for the updated back coupling parameter is
an educated one as well. In order to go from (F™i", fmin)
to Fmr1, BEq. (7) gives for pp,
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So we just chose next time a p,, which has a norm equal
to that of P,,, where P, would have brought us from
(Zm, fm) to £™7™ via the corresponding equation

~ |£rmm _ fm|
DPm = .

fm
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‘@(fm) - fm‘
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If the norm of fm+1 is larger than that one of fmm we
have chosen p,,_1 too big the step before. In that case
we scale the new p,, down with the factor | f™|/| fi1]-
To summarize, p,, follows from

Pm = Dm * Gm (11)
where the factor ¢,, is adjusted in every step,
\f’mm
dm+1 — min 1, TS (12)
‘fm-{-l ‘

Who likes to couple, can do this by coupling back with
pm—1. This is supposed to increase the stability during
the iteration process. The quality of the method is shown
in Fig. 1. In this case the vectors & are represented
by functions A(ﬁ), o(R,€) (gap function, impurity self
energy) of the arguments R and e. The dimension n is
typically of the order of half a million, so its not done
with an Abacus. One function call, G(&), took about 10
minutes CPU on 8 processors of a power challenge (after
debugging the compiler, and forever before). Under this
conditions it would be hopeless to start to calculate a
Jacobi matrix. One could start, but apart from the fact
that one never would finish, there is also no space left g
on the device. It is here, where the outlined method
gives us back all our hope. For mmq, we chose values
smaller than 10. That’s because we are nice and leave
other people some space on our computer too.
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FIG. 1. Note the logarithmic scale. ~Shown is a com-

parison between convergence behavior of (a) simple iteration
Zm41 = G(Fm) and (b) of the outlined method with mmaz = 5.
We iterated the self consistency condition of the equilibrium or-
der parameter and impurity self energy of an s-wave vortex with
817 nodes. With nodes we mean here grid nodes. The mean free
path was chosen 10 coherence lengths. Note again the logarith-
mic scale.



