Dear Author,

Please find attached a print optimised PDF of your article that has appeared in Topical Issue T115 of Physica Scripta.
If you would like to purchase a number of printed copies of your paper, please contact me.

Best Wishes,

Physica Scripta Journals Control
Marston Digital
Omega Park
Collet
Didcot
OX11 7AW
email: rr@lrl.com
voice: +44 1235 518700
fax: +44 1235 515777
web: http://www.physica.org
Overlapping XAFS L Spectra of 3d Metals: A New Application of the Regularization Method

1Institute of Metal Physics, RAS, GSP-170, 620219, Ekaterinburg, Russia
2Udmurt State University, Izhevsk, Russia
3Russian-German Laboratory at BESSY II, 12489 Berlin, Germany
4Free University Berlin, 14195 Berlin, Germany
5Technische Universität Dresden, 01062 Dresden, Germany
6Physikalisches Institut RWTH, Aachen D-52096, Germany
7Montana State University, Bozeman, MT 59717-3840, USA

Received June 26, 2003; accepted November 14, 2003

PACS 6110H

Abstract

L XAFS spectra of polycrystalline Fe and Cr films are investigated by EXAFS and TEY (Total Electron Yield) techniques. A new method of obtaining local structure information from overlapping L XAFS spectra for 3d metals is proposed. This method does not demand any model assumption and any special procedure of deconvolution of L1 – L2 – L3 contributions. The parameters obtained from L XAFS spectra of polycrystalline Fe and Cr films (interatomic distance and coordination number for the first and the second coordination shells) agree with expected crystallographic values. Up to now the regularization method was applied only to nonoverlapping XAFS spectra.

1. Introduction

The photon energy is high enough to excite an electron from an atomic core to the continuum, an edge-jump is found in the X-ray absorption coefficient. The excitation thresholds K, L1, L2, L3 correspond to the transition of 1s → p, 2s → p, 2p → d, 2p → 3s, 2s → p. The special feature of L spectra of 3d metals is overlapping. Fig. 1 shows model L spectra (total one and separate contributions) for pure Fe calculated by FEFF8 [1].

We propose a new method of obtaining local structure information from the overlapping L XAFS spectra for 3d metals using Tikhonov’s method of solving ill-posed problem [2]. Up to now this method was applied to nonoverlapping XAFS spectra [3, 4]. Recently a special procedure of deconvolution L2 → L1 contributions [5] was used for obtaining local structure information.

2. Mathematical algorithm

For one component systems the atomic distribution is described by the pair correlation function (PCF) g(r) which may be written as

\[g(r) = \frac{1}{4\pi p_0} \sum \frac{N_l}{r_i} \exp \left(\frac{1}{2} \kappa (r - r_i) \right). \]

Here \(p_0 \) is atomic density, \(N_l \) is coordination number for the l shell, \(r_i \) is Debye–Waller factor for the l shell. \(r \) is position of the l shell. The normalized oscillating part of the EXAFS signal \(\bar{g}(r) \) for the K – spectrum is described as

\[\bar{g}(r) = 4\pi p_0 \int_0^{\infty} R(k) \frac{f(k,r) \exp \left(-2kr \right)}{2kr} \exp \left(-2k^2r^2 \right) \times \left(\sin(2kr) + 2k(\bar{g}(k) + g(k,r))g(k,r) \right) dr. \]

Here \(R(k) \) is reduction factor, \(f(k,r) \) is a backscattering amplitude module, \(\bar{g}(k) \) is the mean free path of a photoelectron, \(g(k,r) \) is a backscattering phase. All values are calculated by FEFF8 [1].

Using the dispersion laws for L1, L2, L3 spectra one may conclude that L spectra have the same E space but different k spaces (namely, \(k_1, k_2, k_3 \)). The laws for connection of \(k_1, k_2, k_3 \) spaces is found as:

\[k_2 = f(k_1) = \sqrt{k_1^2 + (E_3 - E_2)a}, \]
\[k_3 = h(k_1) = \sqrt{k_1^2 + (E_1 - E_3)a}, \]

where \(E_1, E_2, E_3 \) are energies of \(L_1, L_2, L_3 \) edges, \(a = h^2k^2/(2m) \). Then the equation for the sum of \(L_1, L_2, L_3 \) EXAFS spectra in unified \(k_1 \) space may be written as [6]:

\[\tilde{\chi}_{\text{sum}}(k_1) = W_{L_1}(2k_1f(k_1)) + W_{L_2}(2k_1f(k_1)) + \frac{W_{L_1}(2k_1)}{W_{L_1}(2k_1)}(h(k_1)) = f(k_1), \]

where \(W_{L_1}, W_{L_2}, W_{L_1} \) are weight coefficients used to account the contributions of each edge and calculated by FEFF8 [1].

For L spectra the radial matrix elements are given by \(M_{3l} \) for \(l = 1 \rightarrow 0 \) transitions and \(M_{2l} \) for \(l = 1 \rightarrow l = 2 \) transitions. As shown in [7] for elements with \(Z \geq 20 \) the ratio \(M_{3l}/M_{2l} \)
is nearly independent of k, and the $p \rightarrow s$ contributions are practically unobservable, as $p \rightarrow d$ transitions are favored by a factor of 50. This means that all M_2 contributions in the integral equation can be neglected and hence the L spectra can be analyzed in the same way as is done for the K spectra.

The integral equation for overlapping L spectra has the form:

$$g(k) = 4\pi D \int_0^\infty dr \ g(r)$$

$$\times \left[W_1 \left(\frac{f_1(k, r)}{k_1} \right) \exp \left(\frac{-2r}{\Delta k_1} \right) \sin(2kr + 2\delta_1(k, r) + \varphi_1(k, r)) + W_2 \left(\frac{f_2(k, r)}{k_2} \right) \exp \left(\frac{-2r}{\Delta k_2} \right) \sin(2kr + 2\delta_2(k, r) + \varphi_2(k, r)) + W_3 \left(\frac{f_3(k, r)}{k_3} \right) \exp \left(\frac{-2r}{\Delta k_3} \right) \sin(2kr + 2\delta_3(k, r) + \varphi_3(k, r)) \right]$$

If we compare Eq. (2) for K spectra and Eq. (5) for L spectra we can see that in the last case we have the integral Fredholm equation with more complex kernel than in the first one. For L spectra it is possible to use the regularization method without any modification. Details of solving the EXAFS ill-posed problem may be found in [2–4]. For multicomponent systems the theory is easy to generalize. It is possible to apply this approach not only for overlapping L spectra but also for overlapping K-L spectra (for example, in the oxides Fe$_3$O$_4$, Cr$_2$O$_3$).

3. Experimental details

Two different techniques of experiment were used in this article – EXAFS in transmission mode and Total Electron Yield (TEY) technique.

TEY experiments were performed at room temperature using the facility of the RGBL beamline of BESSY II. The samples were polycrystalline Fe and Cr films. Fe film of thickness \sim300 Å was evaporated under UHV conditions onto W(110) substrate and the measurements were performed immediately after deposition. Cr film of thickness \sim300–400 Å was evaporated under UHV conditions onto MgO(100) substrate at the Institute of Metal Physics, RAS.

The low temperature (70 K) EXAFS measurements were carried out in transmission mode at the U4B beamline of the National Synchrotron Light Source (NSLS) located at Brookhaven National Laboratory (BNL, USA). The sample was polycrystalline Fe film. This film with thickness of 500 Å was evaporated under UHV conditions onto 1 µm thick semitransparent parylene (C$_8$H$_8$)$_n$ substrate (100). To prevent the film from oxidising an additional Al cap layer was deposited on the film.

For obtaining $\chi(k)$ functions for Fe and Cr films from raw experimental data we use the conventional procedure [8]. We normalise the experimental spectrum on sum of L_1, L_2, L_3 edge jumps, but we do not remove L_1 edge jump from the experimental $\chi(k)$ because the value of this jump in comparing with the common jump is approximately 0.1 (see Fig. 1). It validates by the fact that there is no jump at $k \sim 6$ Å$^{-1}$ in the experimental spectra in contrast with the model simulation at the temperature 70 K (Fig. 2).

4. Discussion

Fig. 2 shows experimental $\chi(k)$ functions for Fe and Cr films obtained from TEY measurements and for Fe film obtained from EXAFS measurements in transmission mode. The extraction of the $\chi(k)$ functions from raw data was used [3, 4]. TEY $\chi(k)$ functions were rather noisy due to low statistics so these curves were smoothed. All curves are compared with the model functions calculated by FEFF8 [1].

Applying the regularization method described [2–4], one can find the solutions which are shown on Fig. 3. The obtained results

Overlapping XAFS L Spectra of 3d Metals

Fig. 2. Experimental EXAFS and TEY $\chi(k)$ spectra (dot line) in comparison with simulated functions by FEFF8 (solid lines): (1 – TEY spectra of Fe at 300K, 2 – EXAFS spectra of Fe at 70K, 3 – TEY spectra of Cr at 300K).

Fig. 3. Model PCF (solid line) and obtained (dot line) solution (1 – Fe at 300K, 2 – Fe at 70K, 3 – Cr at 300K).

© Physica Scripta 2005 Physica Scripta T115
Table I. Comparison of the model and experimental values obtained for the first and second shells of crystalline Fe and Cr (interatomic distance r and nearest neighbors coordination number N).

<table>
<thead>
<tr>
<th>Edge</th>
<th>Type of experiment</th>
<th>1st coordination shell</th>
<th>2nd coordination shell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r, Å</td>
<td>N, at.</td>
</tr>
<tr>
<td>Fe</td>
<td>Model 300K</td>
<td>2.483</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>TEY</td>
<td>2.482</td>
<td>7.87</td>
</tr>
<tr>
<td></td>
<td>Model 70K</td>
<td>2.446</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>EXAFS</td>
<td>2.443</td>
<td>8.12</td>
</tr>
<tr>
<td>Cr</td>
<td>Model 300K</td>
<td>2.499</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>TEY</td>
<td>2.501</td>
<td>7.85</td>
</tr>
</tbody>
</table>

are compared with model PCF functions calculated on the basis of the well known crystallographic data.

The following main characteristics of the peaks for the function $g(r)$ have been selected: interatomic distance r and the nearest neighbors’ coordination number N. These values were estimated according to the Gauss functions approximating the peaks of the solution and presented in Table I.

As it can be seen the main characteristics of the first and the second shells for crystalline Fe and Cr correspond to the crystallographic table values. There is a very high resolution in real space r with comparing the Fourier transformation. On the curve of Fourier transformation it is impossible to distinguish the first and the second shells of BCC lattice.

It is necessary to note that during the solution of the inverse problem (2) the contribution of photoelectron multiple scattering on the nearest neighbours were not accounted. It seems than simultaneous solving of three L spectra made the problem more stable.

5. Conclusion

The proposed new method of obtaining local structure information from overlapping XAFS spectra for 3d metals shows its efficiency. In contrast to the conventional methods (Fourier transformation and fitting procedures) this method does not demand any model assumption and any special procedure of deconvolution of L_1, L_2, L_3 – contributions and has a high resolution in real space r. Obtained parameters – interatomic distance, coordination number for the first and the second coordination shells agree well with the expected crystallographic values.

References